login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352995
Smallest positive integer whose cube ends with exactly n 3's.
1
1, 7, 77, 477, 6477, 46477, 446477, 5446477, 85446477, 385446477, 4385446477, 44385446477, 644385446477, 8644385446477, 38644385446477, 138644385446477, 5138644385446477, 115138644385446477, 15138644385446477, 5015138644385446477
OFFSET
0,2
COMMENTS
When A225402(k) = 0, i.e., k is a term of A352282, then a(k) > a(k+1); 1st example is for k = 17 with a(17) = 115138644385446477 > a(18) = 15138644385446477; otherwise, a(n) < a(n+1).
When n <> k, a(n) coincides with the 'backward concatenation' of A225402(n-1) up to A225402(0), where A225402 is the 10-adic integer x such that x^3 = -1/3 (see table in Example section); when n = k, a(k) must be calculated directly with the definition.
Without "exactly" in the name, terms a'(n) should be also: 1, 7, 77, 477, 6477, 46477, 446477, ..., first difference arrives for n = 17.
There are similar sequences when cubes end with 1, 7, 8 or 9.
FORMULA
When n is not in A352282, a(n) = Sum_{k=0..n-1} A225402(k) * 10^k.
EXAMPLE
a(0) = 1 because 1^3 = 1;
a(1) = 7 because 7^3 = 343;
a(2) = 77 because 77^3 = 456533;
a(3) = 477 because 477^3 = 108531333;
------------------------------------------------------------------------------
| | a(n) | a'(n) | A225402(n-1) | concatenation |
| n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) |
------------------------------------------------------------------------------
1 7 7 7 ...7
2 77 77 7 ...77
3 477 477 4 ...477
............................................................................
15 138644385446477 138644385446477 1 ...138644385446477
16 5138644385446477 5138644385446477 5 ...5138644385446477
17 115138644385446477 15138644385446477 1 ...15138644385446477
18 15138644385446477 15138644385446477 0 ...015138644385446477
19 5015138644385446477 5015138644385446477 5 ...5015138644385446477
------------------------------------------------------------------------------
CROSSREFS
Cf. A225402, A352282, A352992 (similar, with 7).
Sequence in context: A045642 A292457 A292737 * A213261 A268958 A068667
KEYWORD
nonn
AUTHOR
Bernard Schott, Apr 24 2022
STATUS
approved