login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333563
a(n) = [x^n] G(x)^n, where G(x) is the o.g.f. of A079489.
2
1, 3, 53, 1056, 22181, 480003, 10588508, 236720424, 5344683429, 121590541641, 2782821611053, 64001191118956, 1477895865330092, 34243264651422596, 795729752353810824, 18537154747116799056, 432781371485493257637, 10123439350286679005973
OFFSET
0,2
COMMENTS
It can be shown that a(n) satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for prime p and positive integers n and k.
The o.g.f. G(x) of A079489 is given by G(x) = c(sqrt(x))*c(-sqrt(x)), where c(x) = ( (1 - sqrt(1 - 4*x))/(2*x) ) is the o.g.f. of the Catalan numbers A000108. It is known that the sequence b(n) := [x^n] c(x)^n = 1/3*binomial(3*n,n) satisfies the supercongruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k - see Meštrović, equation 39. We conjecture that the present sequence satisfies the same congruences. Some examples are given below.
More generally, if r > 0 and s are integers then the sequence a(r,s;n) := [x^(r*n)] G(x)^(s*n) may also satisfy the above congruences.
FORMULA
a(n) = n^2 * Sum_{k = 0..2*n} (-1)^k/((n+2*k)*(5*n-2*k))*C(n+2*k,k)* C(5*n-2*k, 2*n-k) for n >= 1.
a(p) == 3 ( mod p^3) for prime p >= 3, follows from the above formula.
P-recursive: 6*n*(n - 1)*(2*n - 1)*(3*n - 1)*(3*n - 2)*(2117*n^4 - 12615*n^3 + 27976*n^2 - 27348*n + 9936)*a(n) = -(n - 1)*(27269077*n^8 - 217031969*n^7 + 722440183*n^6 - 1304402267*n^5 + 1384804360*n^4 - 874884704*n^3 + 315932544*n^2 - 57998736*n + 3913920)*a(n-1) + 48*(6*n - 7)*(6*n - 8)*(6*n - 9)*(6*n - 10)*(6*n - 11)*(2117*n^4 - 4147*n^3 + 2833*n^2 - 773*n + 66)*a(n-2) with a(1) = 3, a(2) = 53.
[We note that the sequence u(n) := n^2 * Sum_{k = 0..2*n} 1/((n+2*k)*(5*n-2*k))*C(n+2*k,k)*C(5*n-2*k, 2*n-k) = (1/3)*C(6*n,2*n) is known to satisfy the congruences u(n*p^k) == u(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k - see Meštrović, equation 39. If, in the binomial sum formulas for a(n) and u(n) given above, we restrict the summation range to k = 0..n then we conjecture that the resulting pair of sequences satisfy the same congruences.]
a(n) ~ sqrt(1/24 + 1/(8*sqrt(73))) * ((2117*sqrt(73) - 12881)/216)^n / sqrt(Pi*n). - Vaclav Kotesovec, Apr 20 2020
a(n) = (1/5)*binomial(5*n, 2*n)*hypergeom([1/2 + n/2, -3*n, -2*n, n/2], [1/2 - 5*n/2, 1 - 5*n/2, 1 + n], -1) for n >= 1. - Vaclav Kotesovec, May 16 2020
EXAMPLE
Examples of congruences:
a(17) - a(1) = 10123439350286679005973 - 3 = 2(3^3)*5*(17^3)* 7631634401766047 == 0 ( mod 17^3 ).
a(3*5) - a(3) = 18537154747116799056 - 1056 = (2^4)*3*(5^3)*13* 237655830091241 == 0 ( mod 5^3 ).
a(5^2) - a(5) = 952866706104433648666617525245628 - 480003 = 3*(5^7)*17* 3642302759*65659247842693913 == 0 ( mod 5^6 ).
MAPLE
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G:= x -> c(sqrt(x))*c(-sqrt(x)):
H:= series(G(x)^n, x, 26):
seq(coeff(H, x, n), n = 0..25);
MATHEMATICA
Join[{1}, Table[n^2 * Sum[(-1)^k/((n + 2*k)*(5*n - 2*k))*Binomial[n + 2*k, k] * Binomial[5*n - 2*k, 2*n - k], {k, 0, 2*n}], {n, 1, 20}]] (* Vaclav Kotesovec, Apr 20 2020 *)
Join[{1}, Table[Binomial[5*n, 2*n] * HypergeometricPFQ[{1/2 + n/2, -3*n, -2*n, n/2}, {1/2 - 5*n/2, 1 - 5*n/2, 1 + n}, -1]/5, {n, 1, 20}]] (* Vaclav Kotesovec, May 16 2020 *)
PROG
(PARI) a(n) = if (n==0, 1, n^2 * sum(k = 0, 2*n, (-1)^k/((n+2*k)*(5*n-2*k))*binomial(n+2*k, k)*binomial(5*n-2*k, 2*n-k))); \\ Michel Marcus, May 16 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 12 2020
STATUS
approved