login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273802 Prime numbers formed by successively prepending prime numbers to 3. 0
3, 53, 1153, 311153, 101311153, 271101311153, 347271101311153, 631347271101311153, 719631347271101311153, 829719631347271101311153, 1031829719631347271101311153, 11231031829719631347271101311153, 125911231031829719631347271101311153, 1801125911231031829719631347271101311153 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence is related to the existing sequence in which primes are appended so that primes result 2,23,2311,231131... (see A240563). The current sequence cannot start with the first prime 2 because it could not be extended since any number >2 and ending in 2 is a nonprime. So this sequence has to start with 3.

One could also consider analogous sequences starting with any prime greater than 3.

The sequence of primes appended at n-th term is 3, 5, 11, 31, 101, 271, 347, 631, 719, 829, 1031, 1123, 1259, 1801, 1907, 2557, 2591, 2851, 2897, 3301, 3467, 3853, 4157, 4789, 6917, 6991, 7127, 7369, 9767, 13879, 15791, 17239, 19541, 22447, 23663, 25309, 25577, 25873, 29873, 33301, 33713, 34543, 36389, 37159, 39821, 40597, 41453, 41479, 43997, ... - Michael De Vlieger, Jun 03 2016

LINKS

Table of n, a(n) for n=1..14.

EXAMPLE

Start with 3 as the first term.

a(2) = 53, since the next prime after a(1) = 3 is 5; 5 prepended to 3 gives 53, another prime.

a(3) = 1153, since the next prime after that appended to a(2), i.e., 5, is 7, however 7 appended to a(2) = 753 = 3 * 251. The next prime 11, appended to a(2) gives us 1153, which is prime.

MATHEMATICA

a = {3}; Do[p = NextPrime@ a[[n - 1]]; While[! PrimeQ@ FromDigits@ Join[IntegerDigits@ p, Flatten@ Map[IntegerDigits, Reverse@ a]], p = NextPrime@ p]; AppendTo[a, p], {n, 2, 14}]; FoldList[FromDigits@ Join[IntegerDigits@ #2, IntegerDigits@ #1] &, a] (* Michael De Vlieger, Jun 03 2016 *)

PROG

(tcl)

#! /usr/bin/tclsh

set prime_list_file list_prime_1000.dat ;

proc PR_read_primes { fh } {

global Prime Nprime;

  set idx 0;

  while { ![eof $fh] } {

    gets $fh line;

    foreach p $line {

      set Prime($idx) $p;

      incr idx;

    }

  }

  set Nprime $idx;

}

proc PR_is_prime { num } {

  set channel [open "| factor $num r"];

  fconfigure $channel -buffering none;

  set line [read $channel] ;

  #puts "$line [llength $line]";

  if { [llength $line] == 2 } {

    catch { close $channel}

    return 1;

  }

  return 0;

}

### main

if { ! [catch "open $prime_list_file r" fh ] } {

  PR_read_primes $fh;

  close $fh;

} else {

    puts "Cannot open file $prime_list_file";

    exit 1

}

set t $Prime(1);

set num_tested_primes 0;

for { set idx 2 } { $idx < 1000 } { incr idx } {

  # Assemble

  # Simple tests

  set s $Prime($idx)$t;

  if { [PR_is_prime $s] } {

    set t $s;

    puts "$t prepended prime $Prime($idx) skipped $num_tested_primes";

    set num_tested_primes 0;

  } else {

     incr num_tested_primes;

  }

}

# Language is TCL but it requires and external file with the first 1000 primes for convenience. It also uses UNIX program factor as external function to find out whether the number is a prime.

CROSSREFS

Cf. A240563.

Sequence in context: A167217 A203561 A333563 * A216931 A012742 A012823

Adjacent sequences:  A273799 A273800 A273801 * A273803 A273804 A273805

KEYWORD

nonn,base

AUTHOR

Lothar Esser, Jun 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 04:10 EDT 2021. Contains 347673 sequences. (Running on oeis4.)