

A273803


Numbers that are a product of distinct Fibonacci numbers (A160009) and also a product of distinct Lucas numbers (A274280).


1



1, 3, 21, 126, 504, 987, 5922, 23688, 2178309, 13069854, 52279416, 10610209857723, 63661259146338, 254645036585352
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Is every term greater than 3 divisible by 21?


LINKS



EXAMPLE

126 = 2*3*21 = 7*18.


MATHEMATICA

s = {1}; z = 70; f = Fibonacci[2 + Range[z]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s = Prepend[s, 0]; (* A160009 *)
g = LucasL[Range[z]]; t = {1}; Do[t = Union[t, Select[t*g[[i]], # <= g[[z]] &]], {i, z}];
Intersection[s, t]


CROSSREFS



KEYWORD

nonn,more


AUTHOR



STATUS

approved



