login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356889
a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.
0
3, 21, 125, 693, 3669, 18773, 93525, 456021, 2184533, 10310997, 48059733, 221599061, 1012225365, 4585772373, 20624790869, 92162839893, 409453548885, 1809612887381, 7960006055253, 34863681197397, 152099108509013, 661172992169301, 2864594294232405, 12373170851239253
OFFSET
2,1
COMMENTS
a(n) is the number of fixed polyforms of minimal area (2*n)-1 that contain at least one triangle that touches each side of a triangle formed on a Kagome (trihexagonal) lattice. n is the number of triangles that touch each side of the larger triangle.
FORMULA
G.f.: x^2*(3 - 18*x + 32*x^2 - 8*x^3)/((1 - x)*(1 - 4*x)^3). - adapted to the offset by Stefano Spezia, Sep 03 2022
From Stefano Spezia, Sep 03 2022: (Start)
a(n) = (4^n*(10 + 3*n*(3 + n)) - 64)/192.
a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4) for n > 5. (End)
EXAMPLE
a(3) = 21. Up to rotations and reflections, there are 5 possibilities:
.
* * *
/ \ / \ / \
*---* *---* *---*
/ \ / \ / \
* * * * * *
/ \ / \ / \ / \ / \ /#\
*---*---*---* *---*---*---* *---*---*---*
/#####\ /#####\ /#####\#/#####\ /#####\ /#####\
*#######*#######* *#######*#######* *#######*#######*
/#\#####/#\#####/#\ /#\#####/ \#####/#\ /#\#####/#\#####/ \
*---*---*---*---*---* *---*---*---*---*---* *---*---*---*---*---*
.
* *
/ \ / \
*---* *---*
/ \ / \
* * * *
/#\ /#\ / \ /#\
*---*---*---* *---*---*---*
/#####\ /#####\ /#####\#/#####\
*#######*#######* *#######*#######*
/ \#####/#\#####/ \ /#\#####/ \#####/ \
*---*---*---*---*---* *---*---*---*---*---*
MATHEMATICA
Table[(n^2 + 3*n + 10/3)*4^(n-3) - 1/3, {n, 2, 25}] (* James C. McMahon, Jan 03 2024 *)
CROSSREFS
Cf. A334551.
Sequence in context: A144884 A004658 A034552 * A220616 A273803 A036754
KEYWORD
nonn,easy
AUTHOR
Jack Hanke, Sep 02 2022
STATUS
approved