login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334551
Number of fixed polyominoes with 2n-1 cells and width and height both equal to n.
4
1, 4, 25, 120, 497, 1924, 7265, 27288, 102745, 388692, 1477721, 5643064, 21632785, 83204260, 320932177, 1240939448, 4808642313, 18668848852, 72601081385, 282762109272, 1102772229313, 4306062994148, 16832791708257, 65867445819160, 257980829463017
OFFSET
1,2
COMMENTS
A polyomino with width and height equal to n must have at least 2n-1 cells.
LINKS
Andrew Conway, Enumerating 2D percolation series by the finite-lattice method: theory, J. Phys. A: Math. Gen., 28 (1995), 335-349. See Table 4.
FORMULA
a(n) = 2*binomial(2*(n-1), n-1) + 4*(n-2) + (n-2)^2*(2*n-5) + 2*Sum_{i=1..n-2} Sum_{j=1..n-2} ((n-2-i)*(n-2-j)+2)*binomial(i+j, i) for n > 1.
a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8. - Peter J. Taylor, Dec 15 2020
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: 8*x/sqrt(1 - 4*x) - (8 - 17*x + 15*x^2)/(1 - x)^3.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
EXAMPLE
a(3) = 25. Up to rotation and reflection there are 6 possibilities:
X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X
MATHEMATICA
Array[8Binomial[2(#-1), #-1]-3#^2+4#-8&, 50] (* Paolo Xausa, Dec 21 2023 *)
PROG
(PARI) a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8; \\ Peter J. Taylor, Dec 15 2020
CROSSREFS
Main diagonal of A334552.
Cf. A268404.
Sequence in context: A327646 A244746 A110051 * A273023 A013187 A069639
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jun 06 2020
STATUS
approved