Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 07 2024 13:34:06
%S 3,21,125,693,3669,18773,93525,456021,2184533,10310997,48059733,
%T 221599061,1012225365,4585772373,20624790869,92162839893,409453548885,
%U 1809612887381,7960006055253,34863681197397,152099108509013,661172992169301,2864594294232405,12373170851239253
%N a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.
%C a(n) is the number of fixed polyforms of minimal area (2*n)-1 that contain at least one triangle that touches each side of a triangle formed on a Kagome (trihexagonal) lattice. n is the number of triangles that touch each side of the larger triangle.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (13,-60,112,-64).
%F G.f.: x^2*(3 - 18*x + 32*x^2 - 8*x^3)/((1 - x)*(1 - 4*x)^3). - adapted to the offset by _Stefano Spezia_, Sep 03 2022
%F From _Stefano Spezia_, Sep 03 2022: (Start)
%F a(n) = (4^n*(10 + 3*n*(3 + n)) - 64)/192.
%F a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4) for n > 5. (End)
%e a(3) = 21. Up to rotations and reflections, there are 5 possibilities:
%e .
%e * * *
%e / \ / \ / \
%e *---* *---* *---*
%e / \ / \ / \
%e * * * * * *
%e / \ / \ / \ / \ / \ /#\
%e *---*---*---* *---*---*---* *---*---*---*
%e /#####\ /#####\ /#####\#/#####\ /#####\ /#####\
%e *#######*#######* *#######*#######* *#######*#######*
%e /#\#####/#\#####/#\ /#\#####/ \#####/#\ /#\#####/#\#####/ \
%e *---*---*---*---*---* *---*---*---*---*---* *---*---*---*---*---*
%e .
%e * *
%e / \ / \
%e *---* *---*
%e / \ / \
%e * * * *
%e /#\ /#\ / \ /#\
%e *---*---*---* *---*---*---*
%e /#####\ /#####\ /#####\#/#####\
%e *#######*#######* *#######*#######*
%e / \#####/#\#####/ \ /#\#####/ \#####/ \
%e *---*---*---*---*---* *---*---*---*---*---*
%t Table[(n^2 + 3*n + 10/3)*4^(n-3) - 1/3, {n,2,25}] (* _James C. McMahon_, Jan 03 2024 *)
%Y Cf. A334551.
%K nonn,easy
%O 2,1
%A _Jack Hanke_, Sep 02 2022