login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273801
Numbers n for which n = (x - phi(x)) * (y - phi(y)), where n = x + y and x - phi(x) is the Euler cototient function of x.
3
16, 24, 32, 48, 56, 72, 80, 96, 120, 128, 152, 168, 176, 192, 216, 240, 248, 272, 288, 296, 320, 336, 360, 392, 408, 416, 432, 440, 456, 512, 528, 552, 560, 600, 608, 632, 656, 672, 696, 720, 728, 768, 776, 792, 800, 848, 896, 912, 920, 936, 960, 968, 1008, 1032
OFFSET
1,1
LINKS
FORMULA
a(n) = 4*(prime(n+1) + 1). - Paolo P. Lava, Sep 06 2017
EXAMPLE
16 = 4 + 12 = (4 - phi(4)) * (12 - phi(12)) = 2 * 8 = 16 and also
16 = 8 + 8 = (8 - phi(8)) * (8 - phi(8)) = 4 * 4 = 16;
24 = 4 + 20 = (4 - phi(4)) * (20 - phi(20)) = 2 * 12 = 24.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n; for n from 1 to q do
for k from 1 to trunc(n/2) do if (k-phi(k))*(n-k-phi(n-k))=n then print(n); break; fi;
od; od; end: P(10^9);
MATHEMATICA
Select[Range@ 1032, Function[n, Length@ Select[Times @@ Map[(# - EulerPhi@ #) &, {#, n - #}] & /@ Range[0, Floor[n/2]], # == n &] > 0]] (* Michael De Vlieger, Jun 01 2016 *)
CROSSREFS
Sequence in context: A253782 A247065 A082803 * A163284 A100316 A206260
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 31 2016
STATUS
approved