login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100316
Number of 4 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (01;1).
3
1, 16, 24, 34, 48, 70, 108, 178, 312, 574, 1092, 2122, 4176, 8278, 16476, 32866, 65640, 131182, 262260, 524410, 1048704, 2097286, 4194444, 8388754, 16777368, 33554590, 67109028, 134217898, 268435632, 536871094, 1073742012, 2147483842, 4294967496, 8589934798
OFFSET
0,2
COMMENTS
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^m + 2^n + 2*(n*m-n-m).
LINKS
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
FORMULA
a(n) = 2^n + 6*n + 8 for n>0, a(0) = 1.
G.f.: (1+12*x-35*x^2+16*x^3)/((1-2*x)*(1-x)^2). - Alois P. Heinz, Dec 21 2018
E.g.f.: exp(2*x) + 2*(4+3*x)*exp(x) - 8. - G. C. Greubel, Feb 01 2023
MATHEMATICA
Table[If[n==0, 1, 2^n+6*n+8], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
PROG
(Magma) [2^n+6*n+8*(1-0^n): n in [0..40]]; // G. C. Greubel, Feb 01 2023
(SageMath) [2^n+6*n+8*(1-0^n) for n in range(41)] # G. C. Greubel, Feb 01 2023
CROSSREFS
Cf. A100314 (m=2), A100315 (m=3), this sequence (m=4).
Sequence in context: A082803 A273801 A163284 * A206260 A036328 A067028
KEYWORD
nonn
AUTHOR
Sergey Kitaev, Nov 13 2004
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 21 2018
STATUS
approved