login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098932
Numerators in the power series of a function f such that f(f(x)) = sin(x) where f(x) = Sum_{n>=1} a(n)/2^(n-1)*x^(2n-1)/(2n-1)!.
4
1, -1, -3, -53, -1863, -92713, -3710155, 594673187, 329366540401, 104491760828591, 19610322215706989, -5244397496803513989, -7592640928150019948759, -2156328049189410651012985, 3923796638128806973444887205
OFFSET
1,3
COMMENTS
Write f(x) = Sum_{k>=0} b(k)*x^k/k!. Take b(0)=0 and b(1)=1. The remaining b(k) can be found by equating coefficients in f(f(x)) == sin(x). Only the odd terms are nonzero. The sequence given here contains the numerators of the series formed by multiplying (2j+1)!*2^j by the j-th odd term.
LINKS
David Broadhurst, Table of n, a(n) for n = 1..193 (first 100 terms from Paul D. Hanna)
EXAMPLE
f(x) = x - (1/2)*x^3/3! - (3/2^2)*x^5/5! - (53/2^3)*x^7/7! - (1863/2^4)*x^9/9! + ...
MATHEMATICA
a[n_] := a[n] = Module[{A, B, F}, F = Sin[x+O[x]^(2n+1)]; A = F; For[i = 0, i <= 2n-1, i++, B[x_] = InverseSeries[A, x] // Normal; A = (A+B[F])/2]; If[n<1, 0, 2^(n-1) (2n-1)! SeriesCoefficient[A, {x, 0, 2n-1}]]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Aug 16 2022, after PARI code *)
PROG
(PARI) {a(n)=local(A, B, F); F=sin(x+O(x^(2*n+1))); A=F; for(i=0, 2*n-1, B=serreverse(A); A=(A+subst(B, x, F))/2); if(n<1, 0, 2^(n-1)*(2*n-1)!*polcoeff(A, 2*n-1, x))}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A095883 (inverse).
Sequence in context: A352992 A012742 A012823 * A100444 A300420 A300683
KEYWORD
frac,sign
AUTHOR
Edward Scheinerman (ers(AT)jhu.edu), Oct 20 2004
EXTENSIONS
More terms from Paul D. Hanna, Dec 09 2004
Extended b-file from David Broadhurst, Jan 05 2023, submitted by Stan Wagon
STATUS
approved