The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098931 a(0) = 1, a(n) = 1 + 2*3 + 4*5 + 6*7 + ... + (2n)*(2n+1) for n > 0. 1
 1, 7, 27, 69, 141, 251, 407, 617, 889, 1231, 1651, 2157, 2757, 3459, 4271, 5201, 6257, 7447, 8779, 10261, 11901, 13707, 15687, 17849, 20201, 22751, 25507, 28477, 31669, 35091, 38751, 42657, 46817, 51239, 55931, 60901, 66157, 71707, 77559, 83721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If a(n) = a0, a1, a2, a3, ... then Sum(a(n))= a0, a0+a1, a0+a1+a2, a0+a1+a2+a3, ... LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 1 + 3*n^2 + n*(5 + 4*n^2)/3. G.f.: (1 + 3*x + 5*x^2 - x^3)/(1-x)^4. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Jul 28 2015 From Robert Israel, Jul 28 2015: (Start) E.g.f.: (1+6*x+7*x^2+(4/3)*x^3)*exp(x). a(n) = 1 + Sum(A068377(i),i=1..n+1). (End) EXAMPLE a(0) = 1; a(1) = 1 + 2*3 = 7; a(2) = 1 + 2*3 + 4*5 = 27, etc. MAPLE seq((4/3)*n^3+3*n^2+(5/3)*n+1, n=0..100); # Robert Israel, Jul 28 2015 MATHEMATICA Table[1 + 3 n^2 + n (5 + 4 n^2)/3, {n, 0, 40}] (* Robert G. Wilson v, Oct 23 2004 *) LinearRecurrence[{4, -6, 4, -1}, {1, 7, 27, 69}, 40] (* Vincenzo Librandi, Jul 28 2015 *) PROG (MAGMA) [1+3*n^2+n*(5+4*n^2)/3: n in [0..40]]; // Vincenzo Librandi, Jul 28 2015 (PARI) a(n)=n*(4*n^2+9*n+5)/3+1 \\ Charles R Greathouse IV, Jul 28 2015 CROSSREFS Cf. A068377. Sequence in context: A269449 A265900 A159065 * A143690 A007715 A161439 Adjacent sequences:  A098928 A098929 A098930 * A098932 A098933 A098934 KEYWORD nonn,easy AUTHOR Miklos Kristof, Oct 20 2004 EXTENSIONS Edited and extended by Robert G. Wilson v, Oct 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)