login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163746
Expansion of (theta_3(q)^2 + 3 * theta_3(q^3)^2) / 4 - 1 in powers of q.
7
1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2, 0
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) - 1 in powers of q where psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) - 1 in powers of q.
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1+(-1)^e)/2 if p == 3 (mod 4). [corrected by Amiram Eldar, Nov 14 2023]
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
a(n) = A125061(n) unless n=0. a(12*n + 7) = a(12*n + 11) = 0.
a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). - Michael Somos, Sep 02 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 14 2023
EXAMPLE
G.f. = q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger @ n)]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + 3 EllipticTheta[ 3, 0, q^3]^2) / 4 - 1, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, e%2*2 + 1, p%4==1, e+1, 1-e%2)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2) - 1, n))};
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Aug 03 2009
STATUS
approved