login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions. 8
1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.

Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.

Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].

Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].

a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).

G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).

G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.

a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).

EXAMPLE

1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...

MATHEMATICA

s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)

PROG

(PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))}

(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( p==3, 1+e%2*2, if( p%4==1, e+1, !(e%2)))))))}

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))}

CROSSREFS

Cf. A002175, A008441, A053692, A113407, A121444, A122856, A122857, A122865, A125061, A138741.

Sequence in context: A138745 A138952 A138950 * A163746 A004591 A350090

Adjacent sequences: A125058 A125059 A125060 * A125062 A125063 A125064

KEYWORD

nonn,mult

AUTHOR

Michael Somos, Nov 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 8 11:03 EST 2023. Contains 360138 sequences. (Running on oeis4.)