login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087188
Number of partitions of n into distinct squarefree parts.
25
1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 13, 14, 16, 18, 20, 24, 27, 30, 35, 37, 42, 47, 51, 59, 64, 72, 81, 88, 98, 109, 120, 134, 147, 163, 179, 195, 216, 236, 258, 284, 310, 339, 371, 403, 441, 480, 523, 572, 621, 675, 734, 796, 865, 937, 1014, 1100, 1189
OFFSET
0,4
LINKS
FORMULA
O.g.f.: product_{i=1,2,...infinity} [1+x^A005117(i)]. - R. J. Mathar, May 16 2008
a(n) ~ exp(sqrt(2*n)) / (2^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018
EXAMPLE
n=9: 5+3+1 = 6+2+1 = 6+3 = 7+2: a(9)=4;
n=10: 5+3+2 = 6+3+1 = 7+2+1 = 7+3 = 10: a(10)=5.
MAPLE
with(numtheory):
b:= proc(n, i) option remember;
`if`(i*(i+1)/2<n, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i<=n and issqrfree(i), b(n-i, i-1), 0)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 02 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i <= n && SquareFreeQ[i], b[n-i, i-1], 0]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
nmax = 100; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[Abs[MoebiusMu[k]] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
PROG
(Haskell)
a087188 = p a005117_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Jun 01 2015
(PARI) ok(v)=for(i=2, #v, if(v[i]==v[i-1] || !issquarefree(v[i]), return(0))); #v==0 || issquarefree(v[1])
a(n)=my(s, u); forpart(v=n, if(ok(v), s++)); s \\ Charles R Greathouse IV, Nov 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 24 2003
EXTENSIONS
Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015
STATUS
approved