OFFSET
1,4
COMMENTS
Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2.
EXAMPLE
a(9) counts these 4 partitions: 612, 513, 324, 31212.
MATHEMATICA
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] - 1], {n, 1, z}] (* A239510 *)
Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] - 1], {n, 1, z}] (* A239511 *)
Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p] - 1], {n, 1, z}] (* A237828 *)
Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] - 1], {n, 1, z}] (* A239513 *)
Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] - 1], {n, 1, z}] (* A239514 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 24 2014
STATUS
approved