login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239512
Irregular triangular array read by rows: row n gives a list of the partitions of the Lucas numbers.
3
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1
OFFSET
1,2
COMMENTS
The number of partitions represented in row n is A067592(n). The parts of each partition are arranged in nonincreasing order, and the partitions are arranged in Mathematica order (reverse-lexicographic). The parts are the terms of the Lucas sequence, A000032(n), n >= 1.
LINKS
EXAMPLE
The first 7 rows:
1
1 1
3 1 1 1
4 3 1 1 1 1 1
4 1 3 1 1 1 1 1 1 1
4 1 1 3 3 3 1 1 1 1 1 1 1 1 1
7 4 3 4 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1
The first 7 rows represent these partitions:
1
11
3, 111
4, 31, 1111
41, 311, 11111
411, 33, 3111, 111111
7, 43, 431, 41111, 3311, 311111, 1111111
MATHEMATICA
LucasQ[n_] := IntegerQ[Sqrt[5 n^2 + 20]] || IntegerQ[Sqrt[5 n^2 - 20]];
Attributes[LucasQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ LucasQ[#] &] &, Range[0, 12]]] (* A239512, partitions *)
Flatten[t] (* A067592 *)
(* Peter J. C. Moses, Mar 24 2014 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Mar 25 2014
STATUS
approved