OFFSET
0,4
FORMULA
O.g.f.: (1 + x) * Product_{n in A007916} (1 + x^n).
EXAMPLE
A list of all strict integer partitions using 1 and numbers that are not perfect powers begins:
1: (1) 8: (5,2,1) 12: (12) 14: (14)
2: (2) 9: (7,2) 12: (11,1) 14: (13,1)
3: (3) 9: (6,3) 12: (10,2) 14: (12,2)
3: (2,1) 9: (6,2,1) 12: (7,5) 14: (11,3)
4: (3,1) 9: (5,3,1) 12: (7,3,2) 14: (11,2,1)
5: (5) 10: (10) 12: (6,5,1) 14: (10,3,1)
5: (3,2) 10: (7,3) 12: (6,3,2,1) 14: (7,6,1)
6: (6) 10: (7,2,1) 13: (13) 14: (7,5,2)
6: (5,1) 10: (6,3,1) 13: (12,1) 14: (6,5,3)
6: (3,2,1) 10: (5,3,2) 13: (11,2) 14: (6,5,2,1)
7: (7) 11: (11) 13: (10,3) 15: (15)
7: (6,1) 11: (10,1) 13: (10,2,1) 15: (14,1)
7: (5,2) 11: (7,3,1) 13: (7,6) 15: (13,2)
8: (7,1) 11: (6,5) 13: (7,5,1) 15: (12,3)
8: (6,2) 11: (6,3,2) 13: (7,3,2,1) 15: (12,2,1)
8: (5,3) 11: (5,3,2,1) 13: (6,5,2) 15: (11,3,1)
MATHEMATICA
perpowQ[n_]:=GCD@@FactorInteger[n][[All, 2]]>1;
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&And@@Not/@perpowQ/@#&]], {n, 65}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 04 2019
STATUS
approved