OFFSET
0,1
LINKS
T. D. Noe, Rows n = 0..100 of triangle, flattened
FORMULA
1 <= A000120(T(n,k)) <= 2.
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).
EXAMPLE
Triangle begins as:
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
129, 130, 132, 136, 144, 160, 192, 256;
257, 258, 260, 264, 272, 288, 320, 384, 512;
513, 514, 516, 520, 528, 544, 576, 640, 768, 1024;
1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
MATHEMATICA
Flatten[Table[2^n + 2^m, {n, 0, 10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
PROG
(Magma) [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
(Sage) flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
(PARI) A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
CROSSREFS
KEYWORD
AUTHOR
Reinhard Zumkeller, Feb 28 2010
EXTENSIONS
Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010
STATUS
approved