login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207870
Numbers k matched to Zeckendorf polynomials divisible by x+1.
1
6, 10, 14, 16, 23, 26, 35, 37, 42, 51, 57, 60, 68, 74, 83, 90, 92, 97, 106, 110, 116, 120, 127, 132, 134, 146, 149, 157, 163, 172, 178, 184, 188, 192, 194, 206, 214, 217, 234, 236, 241, 250, 254, 260, 264, 271, 276, 278, 288, 294, 298, 302, 304, 311
OFFSET
1,1
COMMENTS
The Zeckendorf polynomials Z(x,k) are defined and ordered at A207813.
EXAMPLE
The first ten Zeckendorf polynomials are 1, x, x^2, x^2 + 1, x^3, x^3 + 1, x + x^3, x^4, 1 + x^4, x + x^4; their values at x=-1 are 1, -1, 1, 2, -1, 0, -2, 1, 2, 0, indicating initial terms for A207869 and this sequence.
MATHEMATICA
fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]],
t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k],
AppendTo[fr, 1]; t = t - Fibonacci[k],
AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
{n, 1, 500}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
Table[p[n, x], {n, 1, 40}]
Table[p[n, x] /. x -> 1, {n, 1, 120}] (* A007895 *)
Table[p[n, x] /. x -> 2, {n, 1, 120}] (* A003714 *)
Table[p[n, x] /. x -> 3, {n, 1, 120}] (* A060140 *)
t1 = Table[p[n, x] /. x -> -1,
{n, 1, 420}] (* A207869 *)
Flatten[Position[t1, 0]] (* this sequence *)
t2 = Table[p[n, x] /. x -> I, {n, 1, 420}];
Flatten[Position[t2, 0] (* A207871 *)
Denominator[Table[p[n, x] /. x -> 1/2,
{n, 1, 120}]] (* A207872 *)
Numerator[Table[p[n, x] /. x -> 1/2,
{n, 1, 120}]] (* A207873 *)
CROSSREFS
Sequence in context: A075777 A315161 A315162 * A315163 A248632 A178246
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 21 2012
STATUS
approved