The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207870 Numbers n matched to Zeckendorf polynomials divisible by x+1. 2

%I

%S 6,10,14,16,23,26,35,37,42,51,57,60,68,74,83,90,92,97,106,110,116,120,

%T 127,132,134,146,149,157,163,172,178,184,188,192,194,206,214,217,234,

%U 236,241,250,254,260,264,271,276,278,288,294,298,302,304,311

%N Numbers n matched to Zeckendorf polynomials divisible by x+1.

%C The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813.

%e The first ten Zeckendorf polynomials are1, x, x^2, x^2 + 1, x^3, x^3 + 1, x + x^3, x^4, 1 + x^4, x + x^4; their values at x=-1 are 1, -1, 1, 2, -1, 0, -2, 1, 2, 0, indicating initial terms for A207869 and A207870.

%t fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]],

%t t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k],

%t AppendTo[fr, 1]; t = t - Fibonacci[k],

%t AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],

%t {n, 1, 500}];

%t b[n_] := Reverse[Table[x^k, {k, 0, n}]]

%t p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]

%t Table[p[n, x], {n, 1, 40}]

%t Table[p[n, x] /. x -> 1, {n, 1, 120}] (* A007895 *)

%t Table[p[n, x] /. x -> 2, {n, 1, 120}] (* A003714 *)

%t Table[p[n, x] /. x -> 3, {n, 1, 120}] (* A060140 *)

%t t1 = Table[p[n, x] /. x -> -1,

%t {n, 1, 420}] (* A207869 *)

%t Flatten[Position[t1, 0]] (* A207870 *)

%t t2 = Table[p[n, x] /. x -> I, {n, 1, 420}];

%t Flatten[Position[t2, 0] (* A207871 *)

%t Denominator[Table[p[n, x] /. x -> 1/2,

%t {n, 1, 120}]] (* A207872 *)

%t Numerator[Table[p[n, x] /. x -> 1/2,

%t {n, 1, 120}]] (* A207873 *)

%Y Cf. A207813, A207869.

%K nonn

%O 1,1

%A _Clark Kimberling_, Feb 21 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 12:37 EDT 2021. Contains 343884 sequences. (Running on oeis4.)