login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254577
Total number of factors over all ordered factorizations of n.
4
1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 18, 1, 5, 5, 20, 1, 18, 1, 18, 5, 5, 1, 56, 3, 5, 8, 18, 1, 31, 1, 48, 5, 5, 5, 75, 1, 5, 5, 56, 1, 31, 1, 18, 18, 5, 1, 160, 3, 18, 5, 18, 1, 56, 5, 56, 5, 5, 1, 132, 1, 5, 18, 112, 5, 31, 1, 18, 5, 31, 1, 264, 1, 5, 18, 18, 5
OFFSET
1,4
COMMENTS
What is the limit log(Sum_{k=1..n} a(k)) / log(n) ?. - Vaclav Kotesovec, Feb 03 2019
FORMULA
Dirichlet generating function: zeta(s)/(1 - zeta(s))^2.
a(n) = Sum_{k>=1} A251683(n,k)*k.
EXAMPLE
a(20)=18 because in the ordered factorizations of twenty: 20, 2*10, 4*5, 5*4, 10*2, 2*2*5, 2*5*2, 5*2*2 there are a total of 18 factors.
MAPLE
with(numtheory):
b:= proc(n) option remember; expand(x*(1+
add(b(n/d), d=divisors(n) minus {1, n})))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=1..degree(p)))(b(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 01 2015
MATHEMATICA
f[n_] := f[n] =Level[Table[Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
f[1] = {{}};
g[list_] := Sum[list[[i]] i, {i, 1, Length[list]}];
Prepend[Rest[Map[g, Map[Table[Count[#, i], {i, 1, Max[#]}] &, Map[Length, Map[Sort, Table[f[n], {n, 1, 60}]], {2}]]]], 1]
CROSSREFS
Cf. A074206.
Sequence in context: A029669 A050329 A147005 * A051707 A302787 A240535
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 01 2015
STATUS
approved