login
A295279
Number of strict tree-factorizations of n.
12
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 12, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 12, 2, 8, 1, 4, 2, 8, 1, 44, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
OFFSET
1,6
COMMENTS
A strict tree-factorization of n is either (case 1) the number n itself or (case 2) a set of two or more strict tree-factorizations, one of each factor in a factorization of n into distinct factors greater than one.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(product of n distinct primes) = A005804(n).
a(prime^n) = A273873(n).
Dirichlet g.f.: (Zeta(s) + Product_{n >= 2}(1 + a(n)/n^s))/2.
EXAMPLE
The a(30) = 8 strict tree-factorizations are: 30, (2*3*5), (2*15), (2*(3*5)), (3*10), (3*(2*5)), (5*6), (5*(2*3)).
The a(36) = 12 strict tree-factorizations are: 36, (2*3*6), (2*3*(2*3)), (2*18), (2*(2*9)), (2*(3*6)), (2*(3*(2*3))), (3*12), (3*(2*6)), (3*(2*(2*3))), (3*(3*4)), (4*9).
MATHEMATICA
sfs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sfs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
sft[n_]:=1+Total[Function[fac, Times@@sft/@fac]/@Select[sfs[n], Length[#]>1&]];
Array[sft, 100]
PROG
(PARI) seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w} \\ Andrew Howroyd, Nov 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 19 2017
STATUS
approved