OFFSET
1,3
COMMENTS
The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.
The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - Daniel Suteu, Mar 29 2022
EXAMPLE
57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;
1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
MAPLE
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i, 1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Michel Lagneau, Mar 27 2022
STATUS
approved