login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350707
Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.
0
0, 1, 2, 3, 5, 7, 8, 18, 34, 57, 144, 239, 322, 610, 1134903170
OFFSET
1,3
COMMENTS
The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.
The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - Daniel Suteu, Mar 29 2022
EXAMPLE
57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;
1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
MAPLE
with(numtheory):
A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917}:
for n from 0 to 11000 do:
y:=factorset(n^2+1):n0:=nops(y):
if A005478 intersect y = y
then
print(n):
else
fi:
od:
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i, 1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022
CROSSREFS
The sequence contains A281618 and A285282.
Sequence in context: A039892 A278645 A352290 * A285282 A105404 A238378
KEYWORD
nonn,hard,more
AUTHOR
Michel Lagneau, Mar 27 2022
STATUS
approved