login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350709
Modified Sisyphus function of order 3: a(n) is the concatenation of (number of digits of n)(number digits of n congruent to 0 modulo 3)(number of digits of n congruent to 1 modulo 3)(number of digits of n congruent to 2 modulo 3).
3
1100, 1010, 1001, 1100, 1010, 1001, 1100, 1010, 1001, 1100, 2110, 2020, 2011, 2110, 2020, 2011, 2110, 2020, 2011, 2110, 2101, 2011, 2002, 2101, 2011, 2002, 2101, 2011, 2002, 2101, 2200, 2110, 2101, 2200, 2110, 2101, 2200
OFFSET
0,1
COMMENTS
If we start with n and repeatedly apply the map i -> a(i), we eventually get the cycle {4031, 4112, 4220}
REFERENCES
M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
EXAMPLE
11 has two digits, both congruent to 1 modulo 3, so a(11) = 2020.
a(20) = 2101.
a(30) = 2200.
a(1111123567) = 10262.
PROG
(Python)
def a(n):
d, m = list(map(int, str(n))), [0, 0, 0]
for di in d: m[di%3] += 1
return int(str(len(d)) + "".join(map(str, m)))
print([a(n) for n in range(37)]) # Michael S. Branicky, Mar 28 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved