login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.
0

%I #30 Jan 14 2023 10:51:15

%S 0,1,2,3,5,7,8,18,34,57,144,239,322,610,1134903170

%N Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.

%C The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.

%C The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - _Daniel Suteu_, Mar 29 2022

%e 57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;

%e 1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).

%p with(numtheory):

%p A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,1066340417491710595814572169, 19134702400093278081449423917}:

%p for n from 0 to 11000 do:

%p y:=factorset(n^2+1):n0:=nops(y):

%p if A005478 intersect y = y

%p then

%p print(n):

%p else

%p fi:

%p od:

%o (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));

%o isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i,1]), return(0))); return(1); \\ _Michel Marcus_, Mar 29 2022

%Y The sequence contains A281618 and A285282.

%Y Cf. A000032, A000045, A005478, A352290, A245236, A339461.

%K nonn,hard,more

%O 1,3

%A _Michel Lagneau_, Mar 27 2022