

A328724


a(1)=2, a(2)=3; a(n) is the smallest k > a(n1) such that k + a(n1) is a multiple of a(n2).


1



2, 3, 5, 7, 8, 13, 19, 20, 37, 43, 68, 104, 168, 248, 256, 488, 536, 928, 1216, 1568, 2080, 2624, 3616, 4256, 6592, 10432, 15936, 25792, 37952, 39424, 74432, 83264, 140032, 193024, 227072, 352000, 556288, 851712, 1373440, 2033408, 2086912, 4013312
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

(a(n+1)+a(n+2))/a(n) gives the sequence 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, ...


LINKS

Robert Israel, Table of n, a(n) for n = 1..6866


EXAMPLE

a(7)=19; a(8)=20. 37 is the smallest number, larger than 20, that can be added to 20 and the result (57) is divisible by 19. So, a(9)=37.


MAPLE

A[1]:= 2: A[2]:= 3:
for n from 3 to 50 do
k:= A[n1] mod A[n2];
A[n]:= k + A[n2]*(1+floor((A[n1]k)/A[n2]));
od:
seq(A[i], i=1..50); # Robert Israel, Oct 27 2019


CROSSREFS

Sequence in context: A080435 A108330 A262587 * A039892 A278645 A285282
Adjacent sequences: A328721 A328722 A328723 * A328725 A328726 A328727


KEYWORD

nonn


AUTHOR

Ali Sada, Oct 26 2019


STATUS

approved



