login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352293
Expansion of e.g.f. 1/(2 - exp(x) - x/(1 + x)).
3
1, 2, 7, 43, 335, 3301, 38925, 535851, 8429139, 149173321, 2933274593, 63446532271, 1497102036567, 38269877372637, 1053531222709269, 31074273060116083, 977649690943993979, 32680936703516606737, 1156722832021068313833, 43216064601701505904983
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} ((-1)^(k-1) * k! + 1) * binomial(n,k) * a(n-k).
a(n) ~ n! * (1+r)^2 / ((3 + r*(3+r)) * r^(n+1)), where r = 0.50855472406037552... is the root of the equation 2 - exp(r) - r/(1+r) = 0. - Vaclav Kotesovec, Jul 25 2022
MATHEMATICA
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x/(1 + x)), {x, 0, m}], x] (* Amiram Eldar, Mar 11 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x/(1+x))))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, ((-1)^(k-1)*k!+1)*binomial(n, k)*a(n-k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2022
STATUS
approved