login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002074
Denominators of coefficients in an asymptotic expansion of the confluent hypergeometric function F(1-b; 2; 4b).
(Formerly M3976 N1645)
1
1, 5, 35, 225, 67375, 853125, 955040625, 1861234375, 151365980390625, 142468185234375, 10686017754521484375, 8684623124912109375, 5398544111530990341796875, 54231540104196533203125, 1161721704933873029968505859375
OFFSET
0,2
COMMENTS
Value of a(5) is incorrectly given as 66693 in Henrici paper. - Sean A. Irvine, Jun 20 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter Henrici, Automatic computations with power series, J. Assoc. Comput. Mach. 3 (1956), 10-15.
FORMULA
Let f(x) = [Sum_{k>=1}(3/(2*k+1)) * x^(2*k+1)]^(1/3) = x + (1/5)*x^3 + (18/175) * x^5 + ...; let g(x) be the Lagrange inversion of f(x), g(x) = REVERT(f(x)) = 1 - (1/5) * x^3 + (3/175) * x^5 + .... Then a(n) = denominator((2 * n + 1) * coeff(g(x), 2*n+1)). - Sean A. Irvine, Jun 20 2013
MATHEMATICA
nmax = 14;
S = Sum[(3/(2k+1)) x^(2k+1), {k, 1, Infinity}]^(1/3) + O[x]^(3nmax) // Normal // Simplify[#, x > 0]& // InverseSeries[# + O[x]^(3nmax), x]&;
a[n_] := Denominator[(2n+1) SeriesCoefficient[S, {x, 0, 2n+1}]];
a /@ Range[0, nmax] (* Jean-François Alcover, Oct 01 2020 *)
CROSSREFS
Cf. A002073 (numerators).
Sequence in context: A320071 A024062 A180250 * A187444 A166176 A154780
KEYWORD
nonn,frac
EXTENSIONS
More terms from Sean A. Irvine, Jun 20 2013
STATUS
approved