login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
7
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
OFFSET
1,3
FORMULA
a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023
MATHEMATICA
Join[{a=0, b=1}, Table[c=5*b+10*a; a=b; b=c, {n, 100}]]
LinearRecurrence[{5, 10}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(PARI) a(n)=([0, 1; 10, 5]^(n-1))[1, 2] \\ Charles R Greathouse IV, Oct 03 2016
(PARI) my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
(Magma) [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
(SageMath)
A180250= BinaryRecurrenceSequence(5, 10, 0, 1)
[A180250(n-1) for n in range(1, 41)] # G. C. Greubel, Jul 21 2023
KEYWORD
nonn,easy
AUTHOR
STATUS
approved