login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002072 a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).
(Formerly M4560 N1942)
22
1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 19316158377073923834000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

An effective abc conjecture (c < rad(abc)^2) would imply that a(27) = a(28) = ... = a(32), and a(33) = 124225935845233319439173. - Lucas A. Brown, Sep 20 2020

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..27.

E. F. Ecklund and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972), 1082-1089.

D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57-79.

Don Reble, Python program

Jim White, Results to P = 127

Wikipedia, Størmer's theorem

FORMULA

a(n) < 10^n/n except for n=4. (Conjectured, from experimental data.) - M. F. Hasler, Jan 16 2015

EXAMPLE

a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.)

a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586).

31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.

MATHEMATICA

smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 17 2016, after M. F. Hasler's observation *)

PROG

(PARI) A002072(n, a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - M. F. Hasler, Jan 16 2015

CROSSREFS

Cf. A002071, A003032, A003033, A122463, A145606, A175607.

Equals A117581(n) - 1.

Sequence in context: A347768 A240325 A145606 * A193943 A067449 A302974

Adjacent sequences: A002069 A002070 A002071 * A002073 A002074 A002075

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Don Reble, Jan 11 2005

a(18)-a(26) from Fred Schneider, Sep 09 2006

Corrected and extended by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 15:41 EDT 2023. Contains 361599 sequences. (Running on oeis4.)