|
|
A347768
|
|
Permanent of the n X n matrix with (j,k)-entry |j-k+1| (j,k = 1..n).
|
|
1
|
|
|
1, 1, 8, 80, 1568, 42308, 1632544, 82377984, 5340729728, 429905599744, 42164608801024, 4944386388782080, 683353973472423936, 109907353260811403520, 20352830852731108528128, 4299139435513999926820864, 1027450150728092835655335936, 275824741022588671077713641472
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Conjecture: For any odd prime p, we have a(p) == 1/2 (mod p).
It is easy to show that for any integer n > 1 the determinant of the n X n matrix with (j,k)-entry |j-k+1| (j,k=1..n) has the value 2^(n-2).
|
|
LINKS
|
|
|
EXAMPLE
|
a(2) = 1 since the permanent of the matrix [|1-1+1|,|1-2+1|; |2-1+1|,|2-2+1|] = [1,0;2,1] has the value 1.
|
|
MATHEMATICA
|
a[n_]:=a[n]=Permanent[Table[Abs[j-k+1], {j, 1, n}, {k, 1, n}]]
Table[a[n], {n, 1, 22}]
|
|
PROG
|
(PARI) a(n) = matpermanent(matrix(n, n, j, k, abs(j-k+1))); \\ Michel Marcus, Sep 13 2021
from sympy import Matrix
def A347768(n): return Matrix(n, n, [abs(j-k+1) for j in range(n) for k in range(n)]).per() # Chai Wah Wu, Sep 14 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|