The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347768 Permanent of the n X n matrix with (j,k)-entry |j-k+1| (j,k = 1..n). 1
 1, 1, 8, 80, 1568, 42308, 1632544, 82377984, 5340729728, 429905599744, 42164608801024, 4944386388782080, 683353973472423936, 109907353260811403520, 20352830852731108528128, 4299139435513999926820864, 1027450150728092835655335936, 275824741022588671077713641472 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: For any odd prime p, we have a(p) == 1/2 (mod p). It is easy to show that for any integer n > 1 the determinant of the n X n matrix with (j,k)-entry |j-k+1| (j,k=1..n) has the value 2^(n-2). LINKS Table of n, a(n) for n=1..18. Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021. EXAMPLE a(2) = 1 since the permanent of the matrix [|1-1+1|,|1-2+1|; |2-1+1|,|2-2+1|] = [1,0;2,1] has the value 1. MATHEMATICA a[n_]:=a[n]=Permanent[Table[Abs[j-k+1], {j, 1, n}, {k, 1, n}]] Table[a[n], {n, 1, 22}] PROG (PARI) a(n) = matpermanent(matrix(n, n, j, k, abs(j-k+1))); \\ Michel Marcus, Sep 13 2021 from sympy import Matrix def A347768(n): return Matrix(n, n, [abs(j-k+1) for j in range(n) for k in range(n)]).per() # Chai Wah Wu, Sep 14 2021 CROSSREFS Cf. A085807. Sequence in context: A057707 A222671 A271443 * A240325 A145606 A002072 Adjacent sequences: A347765 A347766 A347767 * A347769 A347770 A347771 KEYWORD nonn AUTHOR Zhi-Wei Sun, Sep 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:34 EDT 2023. Contains 363029 sequences. (Running on oeis4.)