OFFSET
0,5
COMMENTS
Let M be the tangent matrix of dimension n X n. The definition of a tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a negative Euler permutation of order n if P = -1. See A347601 for further details.
EXAMPLE
Table of negative Euler permutations, length of rows is A347602:
[0] 0;
[1] 0;
[2] 1;
[3] 0;
[4] 2, 7;
[5] 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, ...
.
The first 8 permutations corresponding to the ranks are for n = 5:
4 -> [12453], 5 -> [12534], 6 -> [12543], 7 -> [13245],
10 -> [13452], 12 -> [13542], 19 -> [15234], 20 -> [15243].
MAPLE
# Uses function EulerPermutationsRank from A347766.
A347767Row := n -> `if`(n < 4, [[0, 0, 1, 0][n+1]], EulerPermutationsRank(n, 'neg')): for n from 0 to 6 do A347767Row(n) od;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Sep 12 2021
STATUS
approved