login
A347601
a(n) is the number of positive Euler permutations of order n.
7
1, 0, 0, 2, 7, 16, 102, 1042, 8109, 63280, 642220, 7500626, 89458803, 1135216800, 15935870034, 241410428162, 3858227881945, 65327424977824, 1176448390679256, 22388999178300514, 447692501190569823, 9395318712874789744, 206713705368363820990, 4755693997171333347506
OFFSET
0,4
COMMENTS
Let M be the tangent matrix of dimension n X n. The definition of the tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n (or sigma in EP(n)) if P = 1 and a negative Euler permutation of order n (or sigma in EN(n)) if P = -1.
a(n) = card(EP(n)), the number of positive Euler permutations of order n. A table of positive Euler permutations is given in A347766. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).
FORMULA
Let |S| denote the cardinality of a set S. Following identities hold for n >= 0:
a(n) + A347602(n) = |EP(n) | + |EN(n) | = A000166(n) (rencontres numbers),
a(2n) - A347602(2n) = |EP(2n)| - |EN(2n)| = A122045(n) (Euler numbers),
a(n) - A347602(n) = |EP(n) | - |EN(n) | = A347598(n).
EXAMPLE
Illustrating the decomposition of the rencontres numbers and the Euler numbers:
The third column is the sum of the first two columns and the fourth column is the difference between the first two. The fourth column is the sum of the last two.
--------------------------------------------------------------------------
[ 0] 1, 0, 1, 1, 1, [0]
[ 1] 0, 0, 0, 0, 0, 0,
[ 2] 0, 1, 1, -1, -1, [0]
[ 3] 2, 0, 2, 2, 0, 2,
[ 4] 7, 2, 9, 5, 5, [0]
[ 5] 16, 28, 44, -12, 0, -12,
[ 6] 102, 163, 265, -61, -61, [0]
[ 7] 1042, 812, 1854, 230, 0, 230,
[ 8] 8109, 6724, 14833, 1385, 1385, [0]
[ 9] 63280, 70216, 133496, -6936, 0, -6936,
[10] 642220, 692741, 1334961, -50521, -50521, [0].
MAPLE
# Uses function TangentMatrix from A346831.
EulerPermutations := proc(n, sgn) local M, P, N, s, p, m;
M := TangentMatrix(n); P := 0; N := 0;
for p in Iterator:-Permute(n) do
m := mul(M[k, p(k)], k = 1..n);
if m = 0 then next fi;
if m = 1 then P := P + 1 fi;
if m = -1 then N := N + 1 fi; od;
if sgn = 'pos' then P else N fi end:
A347601 := n -> `if`(n = 0, 1, EulerPermutations(n, 'pos')):
seq(A347601(n), n = 0..8);
PROG
(Julia)
using Combinatorics
function TangentMatrix(N)
M = zeros(Int, N, N)
H = div(N + 1, 2)
for n in 1:N - 1
for k in 0:n - 1
M[n - k, k + 1] = n < H ? 1 : -1
M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
end
end
M end
function EulerPermutations(n, sgn)
M = TangentMatrix(n)
S = 0
for p in permutations(1:n)
sgn == prod(M[k, p[k]] for k in 1:n) && (S += 1)
end
S end
PositiveEulerPermutations(n) = EulerPermutations(n, 1)
CROSSREFS
Cf. A000166, A122045, A346831, A347597, A347598, A347602 (neg. perm.), A347766 (table), A347599, A347600, A346719 (bisection even indices).
Sequence in context: A079815 A362760 A325510 * A375880 A006883 A023269
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 10 2021
STATUS
approved