Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 22 2024 08:45:45
%S 1,1,7,74,1060,19013,408650,10219360,291158230,9302358947,
%T 329192040880,12775809098058,539351216354728,24600280965461923,
%U 1205263251360664310,63115789721408960624,3517483455875467926588,207834769804597591153769,12976002600530598793672490
%N Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.
%H Alois P. Heinz, <a href="/A266305/b266305.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A138177(2n,n).
%e a(2) = 7:
%e [1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
%e [1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
%p gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
%p A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
%p a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n):
%p seq(a(n), n=0..20);
%t gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 25 2017, translated from Maple *)
%Y Cf. A138177, A268309.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jan 31 2016