login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054742
Finite automata.
1
2, 41, 1952, 172043, 20511924, 3058135804, 545880769246, 113492835877474, 26936031159146324, 7186257876123323136, 2129016419091882758064, 693526953186674417975860, 246375213208005330322801608, 94795009032593187381371471299, 39271207630529921493096501099998, 17428450442901657489782698628853383, 8249301503003544171210026750727519638
OFFSET
1,1
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, 1973.
LINKS
Christian G. Bower, PARI programs for transforms, 2007.
Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Table V, p. 112.]
PROG
(PARI) /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054732(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021
CROSSREFS
Inverse Euler transform of A054732.
Sequence in context: A240553 A129208 A133298 * A113634 A098634 A278847
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 22 2000
EXTENSIONS
Terms a(14)-a(17) from Petros Hadjicostas, Mar 08 2021
STATUS
approved