login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Finite automata.
1

%I #14 Mar 08 2021 22:51:07

%S 2,41,1952,172043,20511924,3058135804,545880769246,113492835877474,

%T 26936031159146324,7186257876123323136,2129016419091882758064,

%U 693526953186674417975860,246375213208005330322801608,94795009032593187381371471299,39271207630529921493096501099998,17428450442901657489782698628853383,8249301503003544171210026750727519638

%N Finite automata.

%D F. Harary and E. Palmer, Graphical Enumeration, 1973.

%H Christian G. Bower, <a href="https://oeis.org/transforms_pari.txt">PARI programs for transforms</a>, 2007.

%H Michael A. Harrison, <a href="http://dx.doi.org/10.4153/CJM-1965-010-9">A census of finite automata</a>, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Table V, p. 112.]

%o (PARI) /* This program is a modification of _Christian G. Bower_'s PARI program for the inverse Euler transform from the link above. */

%o lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054732(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ _Petros Hadjicostas_, Mar 08 2021

%Y Inverse Euler transform of A054732.

%K nonn

%O 1,1

%A _Vladeta Jovovic_, Apr 22 2000

%E Terms a(14)-a(17) from _Petros Hadjicostas_, Mar 08 2021