login
Finite automata.
1

%I #14 Mar 08 2021 22:51:07

%S 2,41,1952,172043,20511924,3058135804,545880769246,113492835877474,

%T 26936031159146324,7186257876123323136,2129016419091882758064,

%U 693526953186674417975860,246375213208005330322801608,94795009032593187381371471299,39271207630529921493096501099998,17428450442901657489782698628853383,8249301503003544171210026750727519638

%N Finite automata.

%D F. Harary and E. Palmer, Graphical Enumeration, 1973.

%H Christian G. Bower, <a href="https://oeis.org/transforms_pari.txt">PARI programs for transforms</a>, 2007.

%H Michael A. Harrison, <a href="http://dx.doi.org/10.4153/CJM-1965-010-9">A census of finite automata</a>, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Table V, p. 112.]

%o (PARI) /* This program is a modification of _Christian G. Bower_'s PARI program for the inverse Euler transform from the link above. */

%o lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054732(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ _Petros Hadjicostas_, Mar 08 2021

%Y Inverse Euler transform of A054732.

%K nonn

%O 1,1

%A _Vladeta Jovovic_, Apr 22 2000

%E Terms a(14)-a(17) from _Petros Hadjicostas_, Mar 08 2021