login
A325127
Numbers in whose prime factorization the exponent of prime(k) is greater than k for all prime indices k.
10
1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 625, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2500, 2592, 2916, 3125, 3456, 3888, 4096, 5000, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10000, 10368, 11664, 12500, 13824, 15552
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears more than k times. Such partitions are counted by A115584.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2847 (terms up to 10^12)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
27: {2,2,2}
32: {1,1,1,1,1}
64: {1,1,1,1,1,1}
81: {2,2,2,2}
108: {1,1,2,2,2}
128: {1,1,1,1,1,1,1}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
256: {1,1,1,1,1,1,1,1}
324: {1,1,2,2,2,2}
432: {1,1,1,1,2,2,2}
512: {1,1,1,1,1,1,1,1,1}
625: {3,3,3,3}
648: {1,1,1,2,2,2,2}
729: {2,2,2,2,2,2}
864: {1,1,1,1,1,2,2,2}
972: {1,1,2,2,2,2,2}
MATHEMATICA
Select[Range[1000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k>PrimePi[p]]&]
With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 01 2019
STATUS
approved