OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears more than k times. Such partitions are counted by A115584.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2847 (terms up to 10^12)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
27: {2,2,2}
32: {1,1,1,1,1}
64: {1,1,1,1,1,1}
81: {2,2,2,2}
108: {1,1,2,2,2}
128: {1,1,1,1,1,1,1}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
256: {1,1,1,1,1,1,1,1}
324: {1,1,2,2,2,2}
432: {1,1,1,1,2,2,2}
512: {1,1,1,1,1,1,1,1,1}
625: {3,3,3,3}
648: {1,1,1,2,2,2,2}
729: {2,2,2,2,2,2}
864: {1,1,1,1,1,2,2,2}
972: {1,1,2,2,2,2,2}
MATHEMATICA
Select[Range[1000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k>PrimePi[p]]&]
With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 01 2019
STATUS
approved