login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k. 13
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 162, 250, 256, 288, 324, 500, 512, 576, 648, 729, 1000, 1024, 1125, 1152, 1296, 1458, 2000, 2048, 2250, 2304, 2401, 2592, 2916, 4000, 4096, 4500, 4608, 4802, 5184, 5832, 6561, 8000, 8192, 9000, 9216 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

These are a kind of self-describing numbers (cf. A001462, A304679).

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.

Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Also products of elements of A062457.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

FORMULA

Closed under multiplication.

Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - Amiram Eldar, Sep 30 2020

EXAMPLE

The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).

    1: {}

    2: {1}

    4: {1,1}

    8: {1,1,1}

    9: {2,2}

   16: {1,1,1,1}

   18: {1,2,2}

   32: {1,1,1,1,1}

   36: {1,1,2,2}

   64: {1,1,1,1,1,1}

   72: {1,1,1,2,2}

   81: {2,2,2,2}

  125: {3,3,3}

  128: {1,1,1,1,1,1,1}

  144: {1,1,1,1,2,2}

  162: {1,2,2,2,2}

  250: {1,3,3,3}

  256: {1,1,1,1,1,1,1,1}

MAPLE

q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):

select(q, [$1..10000])[];  # Alois P. Heinz, Mar 08 2019

MATHEMATICA

Select[Range[1000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>Divisible[k, PrimePi[p]]]&]

v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* Amiram Eldar, Sep 30 2020 *)

CROSSREFS

Cf. A001156, A033461, A056239, A062457, A066328, A072873, A112798, A118914 (prime signature), A124010, A181819, A276078, A304679.

Cf. A109298, A324525, A324570, A324571, A324572, A324587, A324588.

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Sequence in context: A080025 A152111 A316856 * A325621 A025611 A049439

Adjacent sequences:  A324521 A324522 A324523 * A324525 A324526 A324527

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 07:45 EDT 2021. Contains 346384 sequences. (Running on oeis4.)