login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325621
Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.
5
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
8: {1,1,1}
9: {2,2}
16: {1,1,1,1}
18: {1,2,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
81: {2,2,2,2}
128: {1,1,1,1,1,1,1}
144: {1,1,1,1,2,2}
162: {1,2,2,2,2}
256: {1,1,1,1,1,1,1,1}
288: {1,1,1,1,1,2,2}
324: {1,1,2,2,2,2}
375: {2,3,3,3}
512: {1,1,1,1,1,1,1,1,1}
MATHEMATICA
Select[Range[1000], IntegerQ[Total[Cases[FactorInteger[#], {p_, k_}:>k/PrimePi[p]!]]]&]
CROSSREFS
Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.
Sequence in context: A152111 A316856 A324524 * A025611 A049439 A251642
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 13 2019
STATUS
approved