login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.
5

%I #6 May 13 2019 08:12:17

%S 1,2,4,8,9,16,18,32,36,64,72,81,128,144,162,256,288,324,375,512,576,

%T 648,729,750,1024,1152,1296,1458,1500,2048,2304,2592,2916,3000,3375,

%U 4096,4608,5184,5832,6000,6561,6750,8192,9216,10368,11664,12000,13122,13500

%N Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%C The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

%e The sequence of terms together with their prime indices begins:

%e 1: {}

%e 2: {1}

%e 4: {1,1}

%e 8: {1,1,1}

%e 9: {2,2}

%e 16: {1,1,1,1}

%e 18: {1,2,2}

%e 32: {1,1,1,1,1}

%e 36: {1,1,2,2}

%e 64: {1,1,1,1,1,1}

%e 72: {1,1,1,2,2}

%e 81: {2,2,2,2}

%e 128: {1,1,1,1,1,1,1}

%e 144: {1,1,1,1,2,2}

%e 162: {1,2,2,2,2}

%e 256: {1,1,1,1,1,1,1,1}

%e 288: {1,1,1,1,1,2,2}

%e 324: {1,1,2,2,2,2}

%e 375: {2,3,3,3}

%e 512: {1,1,1,1,1,1,1,1,1}

%t Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

%Y Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616.

%Y Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

%K nonn

%O 1,2

%A _Gus Wiseman_, May 13 2019