|
|
A316856
|
|
Heinz numbers of integer partitions whose reciprocal sum is an integer.
|
|
20
|
|
|
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 147, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 729, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1323, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2401, 2592, 2646, 2916, 3120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
|
|
LINKS
|
Table of n, a(n) for n=1..51.
|
|
EXAMPLE
|
195 is the Heinz number of (6,3,2), which has reciprocal sum 1/6 + 1/3 + 1/2 = 1, which is an integer, so 195 belongs to the sequence.
The sequence of all integer partitions whose reciprocal sum is an integer begins: (), (1), (11), (111), (22), (1111), (221), (11111), (2211), (111111), (22111), (2222).
|
|
MATHEMATICA
|
Select[Range[1000], IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]], {m, If[#==1, {}, FactorInteger[#]]}]]&]
|
|
CROSSREFS
|
Cf. A000041, A051908, A056239, A058360, A072411, A296150, A316854, A316855, A316857.
Sequence in context: A125853 A080025 A152111 * A324524 A325621 A025611
Adjacent sequences: A316853 A316854 A316855 * A316857 A316858 A316859
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Jul 14 2018
|
|
STATUS
|
approved
|
|
|
|