OFFSET
1,4
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..200 (first 100 terms from Robert G. Wilson v)
EXAMPLE
The a(36) = 10 partitions:
(36),
(30,6), (24,12), (18,18),
(12,12,12),
(12,12,6,6),
(15,10,4,4,3), (12,12,6,3,3), (12,8,8,6,2),
(6,6,6,6,6,6).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], IntegerQ[1/Sum[1/m, {m, #}]]&]], {n, 30}]
ric[n_, p_, s_] := If[n == 0, If[IntegerQ[1/s], c++], Do[If[s + 1/i <= 1, ric[n - i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c = 0; Do[ric[n - j, {j}, 1/j], {j, n}]; c); Array[a, 80] (* after Giovanni Resta in A316898, Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) a(n)={my(s=0); forpart(p=n, if(frac(1/sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Jul 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2018
EXTENSIONS
a(51)-a(77) from Giovanni Resta, Jul 15 2018
STATUS
approved