login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051908 Number of ways to express 1 as the sum of unit fractions such that the sum of the denominators is n. 40
1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 4, 5, 5, 2, 4, 5, 5, 9, 4, 4, 6, 4, 4, 7, 8, 4, 10, 9, 9, 11, 8, 13, 13, 15, 16, 21, 18, 16, 22, 19, 18, 30, 24, 19, 26, 28, 26, 29, 35, 29, 44, 28, 47, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,22

COMMENTS

Also the number of partitions of n whose reciprocal sums to 1; "exact partitions". - Robert G. Wilson v, Sep 30 2009

REFERENCES

Derrick Niederman, "Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed", a Perigee Book, Penguin Group, NY, 2009, pp. 82-83. [From Robert G. Wilson v, Sep 30 2009]

LINKS

David A. Corneth, Table of n, a(n) for n = 1..200 (terms a(1)-a(86) from Jud McCranie, a(87)-a(88) from Robert G. Wilson v, a(89)-a(100) from Seiichi Manyama)

David A. Corneth, Tuples up to n = 170

Gus Wiseman, Sequences counting and ranking integer partitions by their reciprocal sums

Index entries for sequences related to Egyptian fractions

FORMULA

a(n) > 0 for n > 23.

EXAMPLE

1 = 1/2 + 1/2, the sum of denominators is 4, and this is the only expression of 1 as unit fractions with denominator sum 4, so a(4)=1.

The a(22) = 3 partitions whose reciprocal sum is 1 are (12,4,3,3), (10,5,5,2), (8,8,4,2). - Gus Wiseman, Jul 16 2018

MATHEMATICA

(* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[1 == Plus @@ (1/p), c++ ]; i++; p = NextPartition@p]; c]; Array[f, 88] (* Robert G. Wilson v, Sep 30 2009 *)

Table[Length[Select[IntegerPartitions[n], Sum[1/m, {m, #}]==1&]], {n, 30}] (* Gus Wiseman, Jul 16 2018 *)

PROG

(Ruby)

def partition(n, min, max)

  return [[]] if n == 0

  [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}

end

def A051908(n)

  ary = [1]

  (2..n).each{|m|

    cnt = 0

    partition(m, 2, m).each{|ary|

      cnt += 1 if ary.inject(0){|s, i| s + 1 / i.to_r} == 1

    }

    ary << cnt

  }

  ary

end

p A051908(100) # Seiichi Manyama, May 31 2016

CROSSREFS

A028229 lists n such that a(n)=0.

Cf. A002966, A058360, A270599, A316854, A316855, A316888-A316904.

Sequence in context: A110700 A292150 A181875 * A056614 A126309 A048838

Adjacent sequences:  A051905 A051906 A051907 * A051909 A051910 A051911

KEYWORD

nonn

AUTHOR

Jud McCranie, Dec 16 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 12:33 EST 2020. Contains 332136 sequences. (Running on oeis4.)