OFFSET
1,10
COMMENTS
Related to Heron triangles with a partition point on a side of length n where the incircle is tangent. Some partitions correspond to a finite number of Heron triangles. The numbers a(n) in this sequence are the numbers of Heron triangles that match these 'finite' partitions.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Hein van Winkel, Heron triangles, See the sections SQO and SQE.
FORMULA
Let n = 2^t * p_1^a_1 * p_2^a_2 *...* p_r^a_r * q_1^b_1 * q_2^b_2 *...* q_s^b_s with t>=0, a_i>=0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j = -1 (mod 4) for j=1..s.
Further let A = (2a_1 + 1) * (2a_2 + 1) *...* (2a_r + 1) and B = A * (2b_1 + 1) * (2b_2 + 1) *...* (2b_s + 1).
Then a(n) = (A-1) * (B-1) / 4 for t = 0 and a(n) = A * (B-1) / 2 for t = 1 AND t = 2 and a(n) = (2*t - 3) * A * (B+1) / 2 for t > 2.
EXAMPLE
n = 25 = 5 + 20 = 9 + 16 gives 100 * x * (x + 25) = y^2 or 144 * x * (x + 25) = y^2 or 144 * x * (x + 25) = y^2. And the solutions are (x,y) = (144,1560) or (20,300) or (144,1872) or (20,360).
CROSSREFS
KEYWORD
nonn
AUTHOR
Hein van Winkel, Nov 16 2020
STATUS
approved