|
|
A338943
|
|
a(n) is the least number k such that the average number of distinct prime divisors of {1..k} is >= n.
|
|
5
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
10^18 < a(4) < 10^19. - Daniel Suteu, Nov 17 2020
|
|
LINKS
|
Table of n, a(n) for n=0..3.
Chris K. Caldwell and G. L. Honaker, Jr., Prime Curio for 455
Eric Weisstein's World of Mathematics, Distinct Prime Factors.
|
|
EXAMPLE
|
a(2) = 455 because the average number of distinct prime divisors of {1..455} is >= 2.
|
|
CROSSREFS
|
Cf. A001221, A013939, A085829, A328331, A338891.
Sequence in context: A187514 A258873 A244195 * A232593 A267082 A051735
Adjacent sequences: A338940 A338941 A338942 * A338944 A338945 A338946
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Ilya Gutkovskiy, Nov 17 2020
|
|
STATUS
|
approved
|
|
|
|