OFFSET
1,5
COMMENTS
The corresponding denominator array is given in A181873(n,m).
The sequence of row lengths of this array is A093819(n)+1: [2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, ...].
The minimal polynomial of the algebraic number sin(2*Pi/n), n >= 1, is here called Pi(n,x) := Sum_{m=0..d(n)} r(n,m)*x^m with the degree sequence d(n):=A093819(n), and the rationals r(n):=a(n,m)/b(n,m) with b(n,m):=A181873(n,m).
See the Niven reference, p. 28, for the definition of 'minimal polynomial of an algebraic number'.
Minimal polynomials are irreducible.
The minimal polynomials of sin(2*Pi/n) are treated, e.g., in the Lehmer, Niven and Watkins-Zeitlin references.
The minimal polynomials Pi(n,x) of sin(2*Pi/n) are found from Psi(c(n),x), where Psi(m,x) is the minimal polynomial of cos(2*Pi/m), and
c(n):= denominator(|(4-n)/(4*n)|) = A178182(n).
For the regular n-gon inscribed in the unit circle the area is n*sin(2*Pi/n). See the remark by Jack W Grahl under A093819.
S. Beslin and V. de Angelis (see the reference) give an explicit formula for the (integer) minimal polynomial of sin(2*Pi/p), called S_p(x), and cos(2*Pi/p), called C_p(x),for odd prime p, p=2k+1, with the results:
S_p(x) = Sum_{l=0..k} ((-1)^l)*binomial(p,2*l+1)*(1-x^2)^(k-l)*x^(2*l), and C_p(x) = S_p(sqrt((1-x)/2)), where S_p(x), with leading term ((-2)^k))*x^(p-1), checks with((-2)^k)*Pi(p,x). - Wolfdieter Lang, Feb 28 2011
The zeros of Pi(n, x) result from those of the minimal polynomial Psi(n, x) of cos(2*Pi/n), and they are cos(2*Pi*k/n), for k = 0, ..., floor(c(n)/2), with c(n) = A178182(n), and restriction gcd(k, c(n)) = 1, for n >= 1. There are d(n) = A093819(n) such zeros. - Wolfdieter Lang, Oct 30 2019
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
S. Beslin and V. de Angelis, The minimal Polynomials of sin(2Pi/p) and cos(2Pi/p), Mathematics Mag. 77.2 (2004) 146-9.
Wolfdieter Lang, Minimal polynomials for sin(2Pi/n).
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40 (3) (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n,m) = numerator([x^m]Pi(n,x)), n>=1, m=0..A093819(n). For Pi(n,x) see the comments.
The minimal polynomial Pi(n,x) = Product_{k=0..floor(c(n)/2), gcd(k, c(n)) = 1}, x - cos(2*Pi*k/c(n)), for n >= 1. - Wolfdieter Lang, Oct 30 2019
EXAMPLE
Triangle begins:
[0, 1],
[0, 1],
[-3, 0, 1],
[-1, 1],
[5, 0, -5, 0, 1],
[-3, 0, 1],
[-7, 0, 7, 0, -7, 0, 1],
[-1, 0, 1],
[-3, 0, 9, 0, -3, 0, 1],
[5, 0, -5, 0, 1],
...
The rational coefficients r(n,m) start like:
[0, 1],
[0, 1],
[-3/4, 0, 1],
[-1, 1],
[5/16, 0, -5/4, 0, 1],
[-3/4, 0, 1],
[-7/64, 0, 7/8, 0, -7/4, 0, 1],
[-1/2, 0, 1],
[-3/64, 0, 9/16, 0, -3/2, 0, 1],
...
Pi(6,n) = Psi(c(6),x) = Psi(12,x) = x^2-3/4.
MATHEMATICA
p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Numerator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)
CROSSREFS
KEYWORD
sign,easy,frac,tabf
AUTHOR
Wolfdieter Lang, Jan 13 2011
STATUS
approved