login
A181873
Denominators of coefficient array for minimal polynomials of sin(2Pi/n). Rising powers of x.
4
1, 1, 1, 1, 4, 1, 1, 1, 1, 16, 1, 4, 1, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 2, 1, 1, 64, 1, 16, 1, 2, 1, 1, 16, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1, 2, 1, 4096, 1, 1024, 1, 128, 1, 16, 1, 16, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 256, 1, 8, 1, 8, 1, 4, 1, 1, 8, 1, 1, 1, 1, 65536, 1, 4096, 1, 2048, 1, 512, 1, 256, 1, 32, 1, 16, 1, 4, 1, 1, 64, 1, 16, 1, 2, 1, 1, 262144, 1, 65536, 1, 8192, 1, 1024, 1, 1024, 1, 256, 1, 64, 1, 2, 1, 4, 1, 1, 4, 2, 1, 4096, 1, 64, 1, 64, 1, 32, 1, 4, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1
OFFSET
1,5
COMMENTS
The corresponding numerator array is given in A181872(n,m) where details, references, and a W. Lang link are given.
The sequence of row lengths of this array is d(n)+1 with d(n)=A093819(n): [2, 2, 3, 4, 5, 3, 7, 3, 7, 5, 11,... ].
REFERENCES
See A181872.
FORMULA
a(n,m)=denominator([x^m]Pi(n,x)), n>=1, m=0,1,...,d(n), with the d(n)=A093819(n), and Pi(n,x) the minimal polynomials of sin(2*Pi/n) given in A181872.
EXAMPLE
[1, 1], [1, 1], [4, 1, 1], [1, 1], [16, 1, 4, 1, 1], [4, 1, 1], [64, 1, 8, 1, 4, 1, 1], [2, 1, 1], [64, 1, 16, 1, 2, 1, 1], [16, 1, 4, 1, 1],...
The rational coefficients A181872(n,m)/a(n,m) start with:
[0, 1], [0, 1], [-3/4, 0, 1], [-1, 1], [5/16, 0, -5/4, 0, 1], [-3/4, 0, 1], [-7/64, 0, 7/8, 0, -7/4, 0, 1], [-1/2, 0, 1], [-3/64, 0, 9/16, 0, -3/2, 0, 1],...
MATHEMATICA
p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Denominator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)
CROSSREFS
Cf. A181875/A181876 (minimal polynomials of cos(2Pi/n)).
Cf. A181872.
Sequence in context: A038025 A079982 A265143 * A229293 A269443 A039927
KEYWORD
nonn,easy,frac,tabf
AUTHOR
Wolfdieter Lang, Jan 13 2011
STATUS
approved