OFFSET
1,4
COMMENTS
Also the number of ways to express an integer as the sum of unit fractions such that the sum of the denominators is n.
REFERENCES
From a question posted to the news group comp.soft-sys.math.mathematica by "Juan" (erfa11(AT)hotmail.com) at Steven M. Christensen and Associates, Inc. and MathTensor, Inc. Jan 22, 2002 08:46:57 +0000 (UTC).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..80
EXAMPLE
a(12) = 7 because the partitions of 12 whose reciprocal sum is an integer are: {{6, 3, 2, 1}, {4, 4, 2, 1, 1}, {3, 3, 3, 1, 1, 1}, {2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 1, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}. Individually their reciprocal sums are: 2, 3, 4, 3, 6, 9 and 12.
MATHEMATICA
(* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[ IntegerQ[ Plus @@ (1/p)], c++ ]; i++; p = NextPartition@ p]; c]; Array[f, 61]
Table[Count[IntegerPartitions[n], _?(IntegerQ[Total[1/#]]&)], {n, 70}] (* Harvey P. Dale, Sep 10 2022 *)
PROG
(PARI) a(n)=my(s); forpart(v=n, if(type(sum(i=1, #v, 1/v[i]))=="t_INT", s++)); s \\ Charles R Greathouse IV, Dec 15 2020
(PARI) b(n)=if(n<4, return(n==0)); my(s); forpart(v=n, if(type(sum(i=1, #v, 1/v[i]))=="t_INT", s++), [2, n]); s
a(n)=my(s=1); vector(n, i, s+=b(i)) \\ Charles R Greathouse IV, Dec 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 25 2002, Sep 30 2009
STATUS
approved