login
A058360
Number of partitions of n whose reciprocal sum is an integer.
37
1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 19, 23, 25, 31, 33, 38, 42, 51, 57, 66, 75, 86, 97, 109, 122, 138, 155, 177, 200, 230, 253, 287, 320, 363, 405, 456, 507, 572, 639, 707, 785, 877, 971, 1079, 1198, 1334, 1476, 1635, 1802, 2002, 2213, 2445, 2700
OFFSET
1,4
COMMENTS
Also the number of ways to express an integer as the sum of unit fractions such that the sum of the denominators is n.
REFERENCES
From a question posted to the news group comp.soft-sys.math.mathematica by "Juan" (erfa11(AT)hotmail.com) at Steven M. Christensen and Associates, Inc. and MathTensor, Inc. Jan 22, 2002 08:46:57 +0000 (UTC).
LINKS
EXAMPLE
a(12) = 7 because the partitions of 12 whose reciprocal sum is an integer are: {{6, 3, 2, 1}, {4, 4, 2, 1, 1}, {3, 3, 3, 1, 1, 1}, {2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 1, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}. Individually their reciprocal sums are: 2, 3, 4, 3, 6, 9 and 12.
MATHEMATICA
(* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[ IntegerQ[ Plus @@ (1/p)], c++ ]; i++; p = NextPartition@ p]; c]; Array[f, 61]
Table[Count[IntegerPartitions[n], _?(IntegerQ[Total[1/#]]&)], {n, 70}] (* Harvey P. Dale, Sep 10 2022 *)
PROG
(PARI) a(n)=my(s); forpart(v=n, if(type(sum(i=1, #v, 1/v[i]))=="t_INT", s++)); s \\ Charles R Greathouse IV, Dec 15 2020
(PARI) b(n)=if(n<4, return(n==0)); my(s); forpart(v=n, if(type(sum(i=1, #v, 1/v[i]))=="t_INT", s++), [2, n]); s
a(n)=my(s=1); vector(n, i, s+=b(i)) \\ Charles R Greathouse IV, Dec 15 2020
CROSSREFS
Sequence in context: A194815 A029080 A147652 * A241901 A238213 A193942
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 25 2002, Sep 30 2009
STATUS
approved