OFFSET
0,10
COMMENTS
Lim_{n->infinity} a(n)/a(n+1) = 0.8221036... (the smallest real root of 1 - x^4 - x^5 - x^6 + x^10). - Iain Fox, Nov 30 2017
LINKS
Iain Fox, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,0,-1).
FORMULA
G.f.: 1/(1 - x^4 - x^5 - x^6 + x^10).
a(n) = a(n-4) + a(n-5) + a(n-6) - a(n-10), n > 9. - Iain Fox, Nov 30 2017
MATHEMATICA
CoefficientList[Series[1/(1-x^4-x^5-x^6+x^10), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 1, 1, 0, 0, 0, -1}, {1, 0, 0, 0, 1, 1, 1, 0, 1, 2}, 60] (* Harvey P. Dale, Jun 24 2017 *)
PROG
(PARI) first(n) = Vec(1/(1 - x^4 - x^5 - x^6 + x^10) + O(x^n)) \\ Iain Fox, Nov 30 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 09 2008
EXTENSIONS
Definition corrected by N. J. A. Sloane, Nov 10 2008
STATUS
approved