|
|
A029080
|
|
Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^10)).
|
|
1
|
|
|
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 50, 53, 57, 60, 65, 68, 72, 75, 80, 84, 89, 93, 99, 104, 110, 114, 120, 125, 132, 137, 144, 150
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Number of partitions of n into parts 1, 4, 9 and 10. - Ilya Gutkovskiy, May 19 2017
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1,0,0,0,1,0,-1,0,-1,0,1,0,0,0,-1,1,0,0,1,-1).
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 12, 13, 15, 16, 18, 19}, 80] (* Harvey P. Dale, Aug 10 2019 *)
|
|
CROSSREFS
|
Sequence in context: A029115 A029101 A194815 * A147652 A058360 A241901
Adjacent sequences: A029077 A029078 A029079 * A029081 A029082 A029083
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|